Matrix and discrepancy view of generalized random and quasirandom graphs
We will discuss how graph based matrices are capable to find classification of the graph vertices with small within- and between-cluster discrepancies. The structural eigenvalues together with the corresponding spectral subspaces of the normalized modularity matrix are used to find a block-structure in the graph. The notions are extended to rectangular arrays of nonnegative entries and to directed graphs. We also investigate relations between spectral properties, multiway discrepancies, and degree...