Inequalities involving independence domination, -domination, connected and total -domination numbers
Let be an integer-valued function defined on the vertex set of a graph . A subset of is an -dominating set if each vertex outside is adjacent to at least vertices in . The minimum number of vertices in an -dominating set is defined to be the -domination number, denoted by . In a similar way one can define the connected and total -domination numbers and . If for all vertices , then these are the ordinary domination number, connected domination number and total domination...