Quantum expanders and geometry of operator spaces
We show that there are well separated families of quantum expanders with asymptotically the maximal cardinality allowed by a known upper bound. This has applications to the “growth" of certain operator spaces: It implies asymptotically sharp estimates for the growth of the multiplicity of -spaces needed to represent (up to a constant ) the -version of the -dimensional operator Hilbert space as a direct sum of copies of . We show that, when is close to 1, this multiplicity grows as for...