Page 1

Displaying 1 – 20 of 20

Showing per page

Offensive alliances in graphs

Odile Favaron, Gerd Fricke, Wayne Goddard, Sandra M. Hedetniemi, Stephen T. Hedetniemi, Petter Kristiansen, Renu C. Laskar, R. Duane Skaggs (2004)

Discussiones Mathematicae Graph Theory

A set S is an offensive alliance if for every vertex v in its boundary N(S)- S it holds that the majority of vertices in v's closed neighbourhood are in S. The offensive alliance number is the minimum cardinality of an offensive alliance. In this paper we explore the bounds on the offensive alliance and the strong offensive alliance numbers (where a strict majority is required). In particular, we show that the offensive alliance number is at most 2/3 the order and the strong offensive alliance number...

On a matching distance between rooted phylogenetic trees

Damian Bogdanowicz, Krzysztof Giaro (2013)

International Journal of Applied Mathematics and Computer Science

The Robinson-Foulds (RF) distance is the most popular method of evaluating the dissimilarity between phylogenetic trees. In this paper, we define and explore in detail properties of the Matching Cluster (MC) distance, which can be regarded as a refinement of the RF metric for rooted trees. Similarly to RF, MC operates on clusters of compared trees, but the distance evaluation is more complex. Using the graph theoretic approach based on a minimum-weight perfect matching in bipartite graphs, the values...

On connections between hypergraphs and algebras

Konrad Pióro (2000)

Archivum Mathematicum

The aim of the present paper is to translate some algebraic concepts to hypergraphs. Thus we obtain a new language, very useful in the investigation of subalgebra lattices of partial, and also total, algebras. In this paper we solve three such problems on subalgebra lattices, other will be solved in [[Pio4]]. First, we show that for two arbitrary partial algebras, if their directed hypergraphs are isomorphic, then their weak, relative and strong subalgebra lattices are isomorphic. Secondly, we prove...

On Fully Split Lacunary Polynomials in Finite Fields

Khodakhast Bibak, Igor E. Shparlinski (2011)

Bulletin of the Polish Academy of Sciences. Mathematics

We estimate the number of possible degree patterns of k-lacunary polynomials of degree t < p which split completely modulo p. The result is based on a combination of a bound on the number of zeros of lacunary polynomials with some graph theory arguments.

On Graph-Based Cryptography and Symbolic Computations

V. A., Ustimenko (2007)

Serdica Journal of Computing

We have been investigating the cryptographical properties of in nite families of simple graphs of large girth with the special colouring of vertices during the last 10 years. Such families can be used for the development of cryptographical algorithms (on symmetric or public key modes) and turbocodes in error correction theory. Only few families of simple graphs of large unbounded girth and arbitrarily large degree are known. The paper is devoted to the more general theory of directed graphs of large...

On the adjacent eccentric distance sum of graphs

Halina Bielak, Katarzyna Wolska (2015)

Annales UMCS, Mathematica

In this paper we show bounds for the adjacent eccentric distance sum of graphs in terms of Wiener index, maximum degree and minimum degree. We extend some earlier results of Hua and Yu [Bounds for the Adjacent Eccentric Distance Sum, International Mathematical Forum. Vol. 7 (2O02) no. 26. 1280-1294]. The adjaceni eccentric distance sum index of the graph G is defined as [...] where ε(υ) is the eccentricity of the vertex υ, deg(υ) is the degree of the vertex υ and D(υ) = ∑u∊v(G) d (u,υ)is the sum...

On the sum of powers of Laplacian eigenvalues of bipartite graphs

Bo Zhou, Aleksandar Ilić (2010)

Czechoslovak Mathematical Journal

For a bipartite graph G and a non-zero real α , we give bounds for the sum of the α th powers of the Laplacian eigenvalues of G using the sum of the squares of degrees, from which lower and upper bounds for the incidence energy, and lower bounds for the Kirchhoff index and the Laplacian Estrada index are deduced.

One-two descriptor of graphs

K. CH. Das, I. Gutman, D. Vukičević (2011)

Bulletin, Classe des Sciences Mathématiques et Naturelles, Sciences mathématiques

Ordering the non-starlike trees with large reverse Wiener indices

Shuxian Li, Bo Zhou (2012)

Czechoslovak Mathematical Journal

The reverse Wiener index of a connected graph G is defined as Λ ( G ) = 1 2 n ( n - 1 ) d - W ( G ) , where n is the number of vertices, d is the diameter, and W ( G ) is the Wiener index (the sum of distances between all unordered pairs of vertices) of G . We determine the n -vertex non-starlike trees with the first four largest reverse Wiener indices for n 8 , and the n -vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices for n 10 .

Currently displaying 1 – 20 of 20

Page 1