Direct product decompositions of digraphs
The main goal of this paper is to show an application of Graph Theory to classifying Lie algebras over finite fields. It is rooted in the representation of each Lie algebra by a certain pseudo-graph. As partial results, it is deduced that there exist, up to isomorphism, four, six, fourteen and thirty-four -, -, -, and -dimensional algebras of the studied family, respectively, over the field . Over , eight and twenty-two - and -dimensional Lie algebras, respectively, are also found. Finally,...
The edge-domatic number of a graph is the maximum number of classes of a partition of its edge set into dominating sets. This number is studied for cacti, i.e. graphs in which each edge belongs to at most one circuit.