Congruence extension and amalgamation in C£.
A meet semilattice with a partial join operation satisfying certain axioms is a JP-semilattice. A PJP-semilattice is a pseudocomplemented JP-semilattice. In this paper we describe the smallest PJP-congruence containing a kernel ideal as a class. Also we describe the largest PJP-congruence containing a filter as a class. Then we give several characterizations of congruence kernels and cokernels for distributive PJP-semilattices.
We say that a variety of algebras has the Compact Intersection Property (CIP), if the family of compact congruences of every is closed under intersection. We investigate the congruence lattices of algebras in locally finite, congruence-distributive CIP varieties and obtain a complete characterization for several types of such varieties. It turns out that our description only depends on subdirectly irreducible algebras in and embeddings between them. We believe that the strategy used here can...
Characterization of congruence lattices of finite chains with either one or two endomorphisms is given.
An M-Set is a unary algebra whose set of operations is a monoid of transformations of ; is a G-Set if is a group. A lattice is said to be represented by an M-Set if the congruence lattice of is isomorphic to . Given an algebraic lattice , an invariant is introduced here. provides substantial information about properties common to all representations of by intransitive G-Sets. is a sublattice of (possibly isomorphic to the trivial lattice), a -product lattice. A -product...
Using congruence schemes we formulate new characterizations of congruence distributive, arithmetical and majority algebras. We prove new properties of the tolerance lattice and of the lattice of compatible reflexive relations of a majority algebra and generalize earlier results of H.-J. Bandelt, G. Cz'{e}dli and the present authors. Algebras whose congruence lattices satisfy certain 0-conditions are also studied.
The topic of the paper are -algebras, where is a complete lattice. In this research we deal with congruences and homomorphisms. An -algebra is a classical algebra which is not assumed to satisfy particular identities and it is equipped with an -valued equality instead of the ordinary one. Identities are satisfied as lattice theoretic formulas. We introduce -valued congruences, corresponding quotient -algebras and -homomorphisms and we investigate connections among these notions. We prove...
Effect basic algebras (which correspond to lattice ordered effect algebras) are studied. Their ideals are characterized (in the language of basic algebras) and one-to-one correspondence between ideals and congruences is shown. Conditions under which the quotients are OMLs or MV-algebras are found.