Die arithmetischen Operationen für geordnete Mengen
We investigate -directoids which are bounded and equipped by a unary operation which is an antitone involution. Hence, a new operation can be introduced via De Morgan laws. Basic properties of these algebras are established. On every such an algebra a ring-like structure can be derived whose axioms are similar to that of a generalized boolean quasiring. We introduce a concept of symmetrical difference and prove its basic properties. Finally, we study conditions of direct decomposability of directoids...
It is well-known that every MV-algebra is a distributive lattice with respect to the induced order. Replacing this lattice by the so-called directoid (introduced by J. Ježek and R. Quackenbush) we obtain a weaker structure, the so-called skew MV-algebra. The paper is devoted to the axiomatization of skew MV-algebras, their properties and a description of the induced implication algebras.
It is shown that every directoid equipped with sectionally switching mappings can be represented as a certain implication algebra. Moreover, if the directoid is also commutative, the corresponding implication algebra is defined by four simple identities.
We prove that an order algebra assigned to a bounded poset with involution is a discriminator algebra.
A distance between finite partially ordered sets is studied. It is a certain measure of the difference of their structure.
Brouwerian ordered sets generalize Brouwerian lattices. The aim of this paper is to characterize (α)-complete Brouwerian ordered sets in a manner similar to that used previously for pseudocomplemented, Stone, Boolean and distributive ordered sets. The sublattice (G(P)) in the Dedekind-Mac~Neille completion (DM(P)) of an ordered set (P) generated by (P) is said to be the characteristic lattice of (P). We can define a stronger notion of Brouwerianicity by demanding that both (P) and (G(P)) be Brouwerian....