Displaying 381 – 400 of 995

Showing per page

Hausdorff ’s theorem for posets that satisfy the finite antichain property

Uri Abraham, Robert Bonnet (1999)

Fundamenta Mathematicae

Hausdorff characterized the class of scattered linear orderings as the least family of linear orderings that includes the ordinals and is closed under ordinal summations and inversions. We formulate and prove a corresponding characterization of the class of scattered partial orderings that satisfy the finite antichain condition (FAC).  Consider the least class of partial orderings containing the class of well-founded orderings that satisfy the FAC and is closed under the following operations: (1)...

Hilbert algebras as implicative partial semilattices

Jānis Cīrulis (2007)

Open Mathematics

The infimum of elements a and b of a Hilbert algebra are said to be the compatible meet of a and b, if the elements a and b are compatible in a certain strict sense. The subject of the paper will be Hilbert algebras equipped with the compatible meet operation, which normally is partial. A partial lower semilattice is shown to be a reduct of such an expanded Hilbert algebra i ?both algebras have the same ?lters.An expanded Hilbert algebra is actually an implicative partial semilattice (i.e., a relative...

Ideals, congruences and annihilators on nearlattices

Ivan Chajda, Miroslav Kolařík (2007)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

By a nearlattice is meant a join-semilattice having the property that every principal filter is a lattice with respect to the semilattice order. We introduce the concept of (relative) annihilator of a nearlattice and characterize some properties like distributivity, modularity or 0 -distributivity of nearlattices by means of certain properties of annihilators.

Ideals in distributive posets

Cyndyma Batueva, Marina Semenova (2011)

Open Mathematics

We prove that any ideal in a distributive (relative to a certain completion) poset is an intersection of prime ideals. Besides that, we give a characterization of n-normal meet semilattices with zero, thus generalizing a known result for lattices with zero.

Incomparably continuable sets of semilattices

Jaroslav Ježek, Václav Slavík (2000)

Mathematica Bohemica

A finite set of finite semilattices is said to be incomparably continuable if it can be extended to an infinite set of pairwise incomparable (with respect to embeddability) finite semilattices. After giving some simple examples we show that the set consisting of the four-element Boolean algebra and the four-element fork is incomparably continuable.

Independent axiom systems for nearlattices

João Araújo, Michael Kinyon (2011)

Czechoslovak Mathematical Journal

A nearlattice is a join semilattice such that every principal filter is a lattice with respect to the induced order. Hickman and later Chajda et al independently showed that nearlattices can be treated as varieties of algebras with a ternary operation satisfying certain axioms. Our main result is that the variety of nearlattices is 2 -based, and we exhibit an explicit system of two independent identities. We also show that the original axiom systems of Hickman as well as that of Chajda et al are...

Induced pseudoorders

Ivan Chajda, Miroslav Haviar (1991)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Currently displaying 381 – 400 of 995