Translations of distributive and modular ordered sets
Jana Larmerová, Jiří Rachůnek (1988)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
P.V. Ramana Murty, V. Raman (1982)
Mathematica Slovaca
Suter, Ruedi (2000)
Journal of Integer Sequences [electronic only]
Jana Ryšlinková, Teo Sturm (1982)
Banach Center Publications
Ivan Chajda (1978)
Czechoslovak Mathematical Journal
Drake, Brian, Gerrish, Sean, Skandera, Mark (2004)
The Electronic Journal of Combinatorics [electronic only]
R.P. Stanley (1986)
Discrete & computational geometry
Martin Klazar (1993)
Commentationes Mathematicae Universitatis Carolinae
In the first part of the paper we are concerned about finite sequences (over arbitrary symbols) for which . The function measures the maximum length of finite sequences over symbols which contain no subsequence of the type . It follows from the result of Hart and Sharir that the containment is a (minimal) obstacle to . We show by means of a construction due to Sharir and Wiernik that there is another obstacle to the linear growth. In the second part of the paper we investigate whether...
В.В. Блудов, А.И. Кокорин (1979)
Sibirskij matematiceskij zurnal
K. Neumann (1968)
Archivum Mathematicum
R. THRON (1981)
Beiträge zur Algebra und Geometrie = Contributions to algebra and geometry
Vítězslav Novák (1973)
Archivum Mathematicum
František Machala (1994)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
František Machala (1981)
Sborník prací Přírodovědecké fakulty University Palackého v Olomouci. Matematika
Vítězslav Novák (1975)
Archivum Mathematicum
Emmanuel Pichon, Philippe Lenca, Fabrice Guillet, Jian Wei Wang (1994)
Mathématiques et Sciences Humaines
Cette étude s'inscrit dans un prolongement algorithmique d'un travail de Bruno Leclerc, publié dans cette revue, qui discute de la taille maximum d'une antichaîne dans un produit direct P d'ordres totaux. On y présente un algorithme de partitionnement de P en un nombre minimum de chaînes. Enfin, on décrit brièvement une application à l'extraction de connaissance.
C. Flament (1979)
Mathématiques et Sciences Humaines
Ruggero Ferro (1984)
Rendiconti del Seminario Matematico della Università di Padova
Bukovský, L., Butkovičová, E. (1981)
Abstracta. 9th Winter School on Abstract Analysis
Frédéric Chapoton (2010)
Annales mathématiques Blaise Pascal
We define new combinatorial objects, called shrubs, such that forests of rooted trees are shrubs. We then introduce a structure of operad on shrubs. We show that this operad is contained in the Zinbiel operad, by using the inclusion of Zinbiel in the operad of moulds. We also prove that this inclusion is compatible with the richer structure of anticyclic operad that exists on Zinbiel and on moulds.