-poproduct of lattices
If element of a lattice effect algebra is central, then the interval is a lattice effect algebra with the new top element and with inherited partial binary operation . It is a known fact that if the set of central elements of is an atomic Boolean algebra and the supremum of all atoms of in equals to the top element of , then is isomorphic to a subdirect product of irreducible effect algebras ([18]). This means that if there exists a MacNeille completion of which is its extension...
In the present paper we investigate the relations between maximal completions of lattice ordered groups and maximal completions of pseudo -algebras.
A locallic version of Hager’s metric-fine spaces is presented. A general definition of -fineness is given and various special cases are considered, notably all metric frames, complete metric frames. Their interactions with each other, quotients, separability, completion and other topological properties are discussed.
The purpose of this paper is to study the topological properties of the interval topology on a completely distributive lattice. The main result is that a metrizable completely distributive lattice is an ANR if and only if it contains at most finite completely compact elements.
Bounded lattices with an antitone involution the complemented elements of which do not form a sublattice must contain two complemented elements such that not both their join and their meet are complemented. We distinguish (up to symmetry) eight cases and in each of these cases we present such a lattice of minimal cardinality.
Let H be a fixed finite graph and let → H be a hom-property, i.e. the set of all graphs admitting a homomorphism into H. We extend the definition of → H to include certain infinite graphs H and then describe the minimal reducible bounds for → H in the lattice of additive hereditary properties and in the lattice of hereditary properties.
We prove that every modular function on a multilattice with values in a topological Abelian group generates a uniformity on which makes the multilattice operations uniformly continuous with respect to the exponential uniformity on the power set of .