Displaying 61 – 80 of 89

Showing per page

A visual approach to test lattices

Gábor Czédli (2009)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Let p be a k -ary lattice term. A k -pointed lattice L = ( L ; , , d 1 , ... , d k ) will be called a p -lattice (or a test lattice if p is not specified), if ( L ; , ) is generated by { d 1 , ... , d k } and, in addition, for any k -ary lattice term q satisfying p ( d 1 , ... , d k ) q ( d 1 , ... , d k ) in L , the lattice identity p q holds in all lattices. In an elementary visual way, we construct a finite p -lattice L ( p ) for each p . If p is a canonical lattice term,...

Almost ff-universal and q-universal varieties of modular 0-lattices

V. Koubek, J. Sichler (2004)

Colloquium Mathematicae

A variety 𝕍 of algebras of a finite type is almost ff-universal if there is a finiteness-preserving faithful functor F: 𝔾 → 𝕍 from the category 𝔾 of all graphs and their compatible maps such that Fγ is nonconstant for every γ and every nonconstant homomorphism h: FG → FG' has the form h = Fγ for some γ: G → G'. A variety 𝕍 is Q-universal if its lattice of subquasivarieties has the lattice of subquasivarieties of any quasivariety of algebras of a finite type as the quotient of its sublattice....

An algebraic version of the Cantor-Bernstein-Schröder theorem

Hector Freytes (2004)

Czechoslovak Mathematical Journal

The Cantor-Bernstein-Schröder theorem of the set theory was generalized by Sikorski and Tarski to σ -complete boolean algebras, and recently by several authors to other algebraic structures. In this paper we expose an abstract version which is applicable to algebras with an underlying lattice structure and such that the central elements of this lattice determine a direct decomposition of the algebra. Necessary and sufficient conditions for the validity of the Cantor-Bernstein-Schröder theorem for...

An observation on Krull and derived dimensions of some topological lattices

M. Rostami, Ilda I. Rodrigues (2011)

Archivum Mathematicum

Let ( L , ) , be an algebraic lattice. It is well-known that ( L , ) with its topological structure is topologically scattered if and only if ( L , ) is ordered scattered with respect to its algebraic structure. In this note we prove that, if L is a distributive algebraic lattice in which every element is the infimum of finitely many primes, then L has Krull-dimension if and only if L has derived dimension. We also prove the same result for error L , the set of all prime elements of L . Hence the dimensions on the lattice...

Currently displaying 61 – 80 of 89