On the lattice of convexly compatible topologies on a partially ordered set
In this paper, the structures of collection of pronormal subgroups of dicyclic, symmetric and alternating groups are studied in respect of formation of lattices and sublattices of . It is proved that the collections of all pronormal subgroups of and S do not form sublattices of respective and , whereas the collection of all pronormal subgroups of a dicyclic group is a sublattice of . Furthermore, it is shown that and ) are lower semimodular lattices.
Through the study of frame congruences, new characterizations of the paracompactness of frames are obtained.
For p ≤ n, let b1(n),...,bp(n) be independent random vectors in with the same distribution invariant by rotation and without mass at the origin. Almost surely these vectors form a basis for the Euclidean lattice they generate. The topic of this paper is the property of reduction of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If is the basis obtained from b1(n),...,bp(n) by Gram-Schmidt orthogonalization, the quality of the reduction depends upon the sequence of ratios...
We show that the class of principal ideals and the class of semiprime ideals are rhomboidal hereditary in the class of modular lattices. Similar results are presented for the class of ideals with forbidden exterior quotients and for the class of prime ideals.
In this paper the context of independent sets is assigned to the complete lattice (P(M),⊆) of all subsets of a non-empty set M. Some properties of this context, especially the irreducibility and the span, are investigated.