Bounded countable atomic compactness of ordered groups
Relations introduced by Conrad, Drazin, Hartwig, Mitsch and Nambooripad are discussed on general, regular, completely semisimple and completely regular semigroups. Special properties of these relations as well as possible coincidence of some of them are investigated in some detail. The properties considered are mainly those of being a partial order or compatibility with multiplication. Coincidences of some of these relations are studied mainly on regular and completely regular semigroups.
Bounded commutative residuated lattice ordered monoids (-monoids) are a common generalization of -algebras and Heyting algebras, i.e. algebras of basic fuzzy logic and intuitionistic logic, respectively. In the paper we develop the theory of filters of bounded commutative -monoids.
The logical foundations of processes handling uncertainty in information use some classes of algebras as algebraic semantics. Bounded residuated lattice ordered monoids (monoids) are common generalizations of -algebras, i.e., algebras of the propositional basic fuzzy logic, and Heyting algebras, i.e., algebras of the propositional intuitionistic logic. From the point of view of uncertain information, sets of provable formulas in inference systems could be described by fuzzy filters of the corresponding...
We investigate the variety of residuated lattices with a commutative and idempotent monoid reduct.
In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to functions in . It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions...
We investigate when a partially ordered semigroup (with various types of local units) is strongly Morita equivalent to a posemigroup from a given class of partially ordered semigroups. Necessary and sufficient conditions for such equivalence are obtained for a series of well-known classes of posemigroups. A number of sufficient conditions for several classes of naturally ordered posemigroups are also provided.
Maps defined on the interior of the standard non-negative cone in which are both homogeneous of degree and order-preserving arise naturally in the study of certain classes of Discrete Event Systems. Such maps are non-expanding in Thompson’s part metric and continuous on the interior of the cone. It follows from more general results presented here that all such maps have a homogeneous order-preserving continuous extension to the whole cone. It follows that the extension must have at least...