Chains of Decompositions and -Ary Relations
The concept of the (dual) binary discriminator was introduced by R. Halas, I. G. Rosenberg and the author in 1999. We study finite algebras having the (dual) discriminator as a term function. In particular, a simple characterization is obtained for such algebras with a majority term function.
A matrix is said to have -simple image eigenspace if any eigenvector belonging to the interval is the unique solution of the system in . The main result of this paper is a combinatorial characterization of such matrices in the linear algebra over max-min (fuzzy) semiring. The characterized property is related to and motivated by the general development of tropical linear algebra and interval analysis, as well as the notions of simple image set and weak robustness (or weak stability) that...
An algebra is tolerance trivial if where is the lattice of all tolerances on . If contains a Mal’cev function compatible with each , then is tolerance trivial. We investigate finite algebras satisfying also the converse statement.
By an equivalence system is meant a couple where is a non-void set and is an equivalence on . A mapping of an equivalence system into is called a class preserving mapping if for each . We will characterize class preserving mappings by means of permutability of with the equivalence induced by .
We introduce a special set of relations called clausal relations. We study a Galois connection Pol-CInv between the set of all finitary operations on a finite set D and the set of clausal relations, which is a restricted version of the Galois connection Pol-Inv. We define C-clones as the Galois closed sets of operations with respect to Pol-CInv and describe the lattice of all C-clones for the Boolean case D = {0,1}. Finally we prove certain results about C-clones over a larger set.
A semigroup S is said to be completely π-regular if for any a ∈ S there exists a positive integer n such that aⁿ is completely regular. A completely π-regular semigroup S is said to be a GV-semigroup if all the regular elements of S are completely regular. The present paper is devoted to the study of generalized quasi-orthodox GV-semigroups and least Clifford congruences on them.