Displaying 321 – 340 of 16591

Showing per page

A generalization of Rademacher's reciprocity law

Sandro Bettin (2013)

Acta Arithmetica

We generalize Rademacher's reciprocity formula for the Dedekind sum to a family of cotangent sums. One of the sums in this family is strictly related to the Vasyunin sum, a function defined on the rationals that is relevant to the Nyman-Beurling-Báez-Duarte approach to the Riemann hypothesis.

A generalization of Scholz’s reciprocity law

Mark Budden, Jeremiah Eisenmenger, Jonathan Kish (2007)

Journal de Théorie des Nombres de Bordeaux

We provide a generalization of Scholz’s reciprocity law using the subfields K 2 t - 1 and K 2 t of ( ζ p ) , of degrees 2 t - 1 and 2 t over , respectively. The proof requires a particular choice of primitive element for K 2 t over K 2 t - 1 and is based upon the splitting of the cyclotomic polynomial Φ p ( x ) over the subfields.

A generalization of the LLL-algorithm over euclidean rings or orders

Huguette Napias (1996)

Journal de théorie des nombres de Bordeaux

Numerous important lattices ( D 4 , E 8 , the Coxeter-Todd lattice K 12 , the Barnes-Wall lattice Λ 16 , the Leech lattice Λ 24 , as well as the 2 -modular 32 -dimensional lattices found by Quebbemann and Bachoc) possess algebraic structures over various Euclidean rings, e.g. Eisenstein integers or Hurwitz quaternions. One obtains efficient algorithms by performing within this frame the usual reduction procedures, including the well known LLL-algorithm.

Currently displaying 321 – 340 of 16591