Displaying 641 – 660 of 16591

Showing per page

A note on the diophantine equation k 2 - 1 = q n + 1

Maohua Le (1998)

Colloquium Mathematicae

In this note we prove that the equation k 2 - 1 = q n + 1 , q 2 , n 3 , has only finitely many positive integer solutions ( k , q , n ) . Moreover, all solutions ( k , q , n ) satisfy k 10 10 182 , q 10 10 165 and n 2 · 10 17 .

A note on the Diophantine equation P(z) = n! + m!

Maciej Gawron (2013)

Colloquium Mathematicae

We consider the Brocard-Ramanujan type Diophantine equation P(z) = n! + m!, where P is a polynomial with rational coefficients. We show that the ABC Conjecture implies that this equation has only finitely many integer solutions when d ≥ 2 and P ( z ) = a d z d + a d - 3 z d - 3 + + a x + a .

A note on the diophantine equation x 2 + b Y = c z

Maohua Le (2006)

Czechoslovak Mathematical Journal

Let a , b , c , r be positive integers such that a 2 + b 2 = c r , min ( a , b , c , r ) > 1 , gcd ( a , b ) = 1 , a is even and r is odd. In this paper we prove that if b 3 ( m o d 4 ) and either b or c is an odd prime power, then the equation x 2 + b y = c z has only the positive integer solution ( x , y , z ) = ( a , 2 , r ) with min ( y , z ) > 1 .

A note on the distribution of angles associated to indefinite integral binary quadratic forms

Dragan Đokić (2019)

Czechoslovak Mathematical Journal

To each indefinite integral binary quadratic form Q , we may associate the geodesic in through the roots of quadratic equation Q ( x , 1 ) . In this paper we study the asymptotic distribution (as discriminant tends to infinity) of the angles between these geodesics and one fixed vertical geodesic which intersects all of them.

Currently displaying 641 – 660 of 16591