Correspondance
Dans cet article, nous proposons une nouvelle méthode pour démontrer la bijectivité de la correspondance de Howe pour les paires duales du type sur un corps localement compact non archimédien. La preuve est basée sur une étude soigneuse de la filtration de Kudla [11] ainsi que sur les résultats de [13] à propos de l’irréductibilité d’une représentation induite parabolique. Elle est valable pour de caractéristique quelconque et nous permet d’expliciter la bijection en termes des paramètres...
Soient une variété de Shimura, fermée et irréductible et un ensemble Zariski dense de points spéciaux. Selon la conjecture d’André–Oort, est une sous-variété de type Hodge. Par exemple, si est un espace de modules de variétés abéliennes, est un ensemble de points correspondant à des variétés de type CM et doit paramétrer des variétés abéliennes munies de certaines classes de Hodge. En utilisant les actions de l’algèbre de Hecke et du groupe de Galois, Edixhoven et Yafaev montrent certains...
There are two mistakes in the referred paper. One is ridiculous and one is significant. But none is serious.
Nous corrigeons une erreur contenue dans un article précédent où sont données deux définitions prétendument équivalentes du -groupe des classes logarithmiques signées d’un corps de nombres.
We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.
We add a sufficient condition for validity of Propo- sition 4.10 in the paper Frougny et al. (2004). This condition is not a necessary one, it is nevertheless convenient, since anyway most of the statements in the paper Frougny et al. (2004) use it.
Theorem 1 of J.-J. Lee, Congruences for certain binomial sums. Czech. Math. J. 63 (2013), 65–71, is incorrect as it stands. We correct this here. The final result is changed, but the essential idea of above mentioned paper remains valid.