On Pascal’s triangle modulo
We use the properties of -adic integrals and measures to obtain general congruences for Genocchi numbers and polynomials and tangent coefficients. These congruences are analogues of the usual Kummer congruences for Bernoulli numbers, generalize known congruences for Genocchi numbers, and provide new congruences systems for Genocchi polynomials and tangent coefficients.
We assign to each pair of positive integers and a digraph whose set of vertices is and for which there is a directed edge from to if . The digraph is semiregular if there exists a positive integer such that each vertex of the digraph has indegree or 0. Generalizing earlier results of the authors for the case in which , we characterize all semiregular digraphs when is arbitrary.
Let p be an odd prime and let a be a positive integer. In this paper we investigate the sum , where h and m are p-adic integers with m ≢ 0 (mod p). For example, we show that if h ≢ 0 (mod p) and , then , where (·/·) denotes the Jacobi symbol. Here is another remarkable congruence: If then .
Let t, b be mutually prime positive integers. We say that the residue class t mod b is basic if there exists n such that tn ≡ -1 mod b; otherwise t is not basic. In this paper we relate the basic character of t mod b to the quadratic character of t modulo the prime factors of b. If all prime factors p of b satisfy p ≡ 3 mod 4, then t is basic mod b if t is a quadratic non-residue mod p for all such p; and t is not basic mod b if t is a quadratic residue mod p for all such p. If, for all prime factors...