Sur le nombre des racines et des facteurs irréductibles d'une congruence donnée
The article studies the cubic mapping graph of , the ring of Gaussian integers modulo . For each positive integer , the number of fixed points and the in-degree of the elements and in are found. Moreover, complete characterizations in terms of are given in which is semiregular, where is induced by all the zero-divisors of .
We connect the discrete logarithm problem over prime fields in the safe prime case to the logarithmic derivative.
For a finite commutative ring and a positive integer , we construct an iteration digraph whose vertex set is and for which there is a directed edge from to if . Let , where and is a finite commutative local ring for . Let be a subset of (it is possible that is the empty set ). We define the fundamental constituents of induced by the vertices which are of the form if , otherwise where U denotes the unit group of and D denotes the zero-divisor set of . We investigate...
0. Introduction. The numbers introduced by Stirling in 1730 in his Methodus differentialis [11], subsequently called “Stirling numbers” of the first and second kind, are of the greatest utility in the calculus of finite differences, in number theory, in the summation of series, in the theory of algorithms, in the calculation of the Bernstein polynomials [9]. In this study, we demonstrate some properties of Stirling numbers of the second kind similar to those satisfied by binomial coefficients; in...