On Dirichlet characters of polynomials
A. Naranjani (1984)
Acta Arithmetica
Jan Śliwa (1973)
Colloquium Mathematicae
Pavel Kostyrko (1982)
Časopis pro pěstování matematiky
Litsyn, Simon, Shevelev, Vladimir (2007)
Integers
Haukkanen, Pentti (1995)
Portugaliae Mathematica
Wei Cao (2007)
Czechoslovak Mathematical Journal
A set of distinct positive integers is said to be gcd-closed if for all . Shaofang Hong conjectured in 2002 that for a given positive integer there is a positive integer depending only on , such that if , then the power LCM matrix defined on any gcd-closed set is nonsingular, but for , there exists a gcd-closed set such that the power LCM matrix on is singular. In 1996, Hong proved and noted for all . This paper develops Hong’s method and provides a new idea to calculate...
Chidambaraswamy, J., Krishnaiah, P.V. (1989)
International Journal of Mathematics and Mathematical Sciences
J. Browkin, A. Schinzel (1995)
Colloquium Mathematicae
W. Sierpiński asked in 1959 (see [4], pp. 200-201, cf. [2]) whether there exist infinitely many positive integers not of the form n - φ(n), where φ is the Euler function. We answer this question in the affirmative by proving Theorem. None of the numbers (k = 1, 2,...) is of the form n - φ(n).
Harlan Stevens (1977)
Mathematische Annalen
Zhou, Weiyi, Zhu, Long (2009)
Integers
Sándor, József (2004)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Sándor, J. (2001)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Chen, Yong-Gao, Fang, Jin-Hui (2008)
Integers
Min Tang, Xiao-Zhi Ren, Meng Li (2013)
Colloquium Mathematicae
For a positive integer n, let σ(n) denote the sum of the positive divisors of n. Let d be a proper divisor of n. We call n a near-perfect number if σ(n) = 2n + d, and a deficient-perfect number if σ(n) = 2n - d. We show that there is no odd near-perfect number with three distinct prime divisors and determine all deficient-perfect numbers with at most two distinct prime factors.
Min Tang, Xiaoyan Ma, Min Feng (2016)
Colloquium Mathematicae
For a positive integer n, let σ(n) denote the sum of the positive divisors of n. We call n a near-perfect number if σ(n) = 2n + d where d is a proper divisor of n. We show that the only odd near-perfect number with four distinct prime divisors is 3⁴·7²·11²·19².
Robbins, Neville (2002)
Journal of Integer Sequences [electronic only]
Sándor, József, Kovács, Lehel István (2009)
Acta Universitatis Sapientiae. Mathematica
Iannucci, Douglas E., Deng, Moujie, Cohen, Graeme L. (2003)
Journal of Integer Sequences [electronic only]
Umberto Zannier (1996)
Manuscripta mathematica
A. Perelli, U. Zannier (1984)
Journal für die reine und angewandte Mathematik