On the properties of oscillation and almost periodicity of certain convolutions
Previous Page 7
Paolo Codecà (1984)
Rendiconti del Seminario Matematico della Università di Padova
Emma Lehmer (1971)
Journal für die reine und angewandte Mathematik
Luca, Florian, Pomerance, Carl (2010)
The New York Journal of Mathematics [electronic only]
C.L. Stewart (1980)
Journal für die reine und angewandte Mathematik
Ayyadurai Sankaranarayanan, Saurabh Kumar Singh (2015)
Acta Arithmetica
Let ϕ(n) denote the Euler totient function. We study the error term of the general kth Riesz mean of the arithmetical function n/ϕ(n) for any positive integer k ≥ 1, namely the error term where . For instance, the upper bound for |Ek(x)| established here improves the earlier known upper bounds for all integers k satisfying .
Panaitopol, Laurenţiu (2002)
JIPAM. Journal of Inequalities in Pure & Applied Mathematics [electronic only]
Tasoev, B.G. (1999)
Vladikavkazskiĭ Matematicheskiĭ Zhurnal
Weingartner, Andreas (2011)
Journal of Integer Sequences [electronic only]
Florian Luca (2003)
Mathematica Slovaca
H. Maier (1984)
Colloquium Mathematicae
Pentti Haukkanen, Jerzy Rutkowski (1990)
Colloquium Mathematicae
P. Erdös, R. Hall (1973)
Acta Arithmetica
Štefan Porubský (1978)
Mathematica Slovaca
Takuya Okamoto, Tomokazu Onozuka (2015)
Acta Arithmetica
We give a method of obtaining explicit formulas for various mean values of Dirichlet L-functions which are expressed in terms of the Riemann zeta-function, the Euler function and Jordan's totient functions. Applying those results to mean values of Dirichlet L-functions, we also give an explicit formula for certain mean values of double Dirichlet L-functions.
J. L. Nicolas (1969)
Bulletin de la Société Mathématique de France
Y.-F. S. Pétermann (1991)
Journal de théorie des nombres de Bordeaux
Let (the -th Jordan totient function, and for the Euler phi function), and consider the associated error termWhen , both and are finite, and we are interested in estimating these quantities. We may consider insteadd 1 (d)dk ( 12 - { nd} ), since from [AS] and from the present paper . We show that belongs to an interval of the formwhere as . From a more practical point of view we describe an algorithm capable of yielding arbitrary good approximations of . We apply this algorithm...
Previous Page 7