On the function
Suppose that N is an odd perfect number and is a prime power with . Define the index . We prove that m cannot take the form , where u is a positive integer and 2u+1 is composite. We also prove that, if q is the Euler prime, then m cannot take any of the 30 forms q₁, q₁², q₁³, q₁⁴, q₁⁵, q₁⁶, q₁⁷, q₁⁸, q₁q₂, q₁²q₂, q₁³q₂, q₁⁴ q₂, q₁⁵q₂, q₁²q₂², q₁³q₂², q₁⁴q₂², q₁q₂q₃, q₁²q₂q₃, q₁³q₂q₃, q₁⁴q₂q₃, q₁²q₂²q₃, q₁²q₂²q₃², q₁q₂q₃q₄, q₁²q₂q₃q₄, q₁³q₂q₃q₄, q₁²q₂²q₃q₄, q₁q₂q₃q₄q₅, q₁²q₂q₃q₄q₅, q₁q₂q₃q₄q₅q₆,...
We show that there exist infinitely many positive integers r not of the form (p-1)/2 - ϕ(p-1), thus providing an affirmative answer to a question of Neville Robbins.
For natural numbers a,b and positive integer n, let R(a,b;n) denote the number of representations of n in the form . Lomadze discovered a formula for R(6,0;n). Explicit formulas for R(1,5;n), R(2,4;n), R(3,3;n), R(4,2;n) and R(5,1;n) are determined in this paper by using the (p;k)-parametrization of theta functions due to Alaca, Alaca and Williams.