Displaying 61 – 80 of 228

Showing per page

Halfway to a solution of X 2 - D Y 2 = - 3

R. A. Mollin, A. J. Van der Poorten, H. C. Williams (1994)

Journal de théorie des nombres de Bordeaux

It is well known that the continued fraction expansion of D readily displays the midpoint of the principal cycle of ideals, that is, the point halfway to a solution of x 2 - D y 2 = ± 1 . Here we notice that, analogously, the point halfway to a solution of x 2 - D y 2 = - 3 can be recognised. We explain what is going on.

Hurwitz continued fractions with confluent hypergeometric functions

Takao Komatsu (2007)

Czechoslovak Mathematical Journal

Many new types of Hurwitz continued fractions have been studied by the author. In this paper we show that all of these closed forms can be expressed by using confluent hypergeometric functions 0 F 1 ( ; c ; z ) . In the application we study some new Hurwitz continued fractions whose closed form can be expressed by using confluent hypergeometric functions.

Introduction to Diophantine Approximation

Yasushige Watase (2015)

Formalized Mathematics

In this article we formalize some results of Diophantine approximation, i.e. the approximation of an irrational number by rationals. A typical example is finding an integer solution (x, y) of the inequality |xθ − y| ≤ 1/x, where 0 is a real number. First, we formalize some lemmas about continued fractions. Then we prove that the inequality has infinitely many solutions by continued fractions. Finally, we formalize Dirichlet’s proof (1842) of existence of the solution [12], [1].

Jacobi symbols, ambiguous ideals, and continued fractions

R. A. Mollin (1998)

Acta Arithmetica

The purpose of this paper is to generalize some seminal results in the literature concerning the interrelationships between Legendre symbols and continued fractions. We introduce the power of ideal theory into the arena. This allows significant improvements over the existing results via the infrastructure of real quadratic fields.

Klein polyhedra and lattices with positive norm minima

Oleg N. German (2007)

Journal de Théorie des Nombres de Bordeaux

A Klein polyhedron is defined as the convex hull of nonzero lattice points inside an orthant of n . It generalizes the concept of continued fraction. In this paper facets and edge stars of vertices of a Klein polyhedron are considered as multidimensional analogs of partial quotients and quantitative characteristics of these “partial quotients”, so called determinants, are defined. It is proved that the facets of all the 2 n Klein polyhedra generated by a lattice Λ have uniformly bounded determinants...

Lacunary formal power series and the Stern-Brocot sequence

Jean-Paul Allouche, Michel Mendès France (2013)

Acta Arithmetica

Let F ( X ) = n 0 ( - 1 ) ε X - λ be a real lacunary formal power series, where εₙ = 0,1 and λ n + 1 / λ > 2 . It is known that the denominators Qₙ(X) of the convergents of its continued fraction expansion are polynomials with coefficients 0, ±1, and that the number of nonzero terms in Qₙ(X) is the nth term of the Stern-Brocot sequence. We show that replacing the index n by any 2-adic integer ω makes sense. We prove that Q ω ( X ) is a polynomial if and only if ω ∈ ℤ. In all the other cases Q ω ( X ) is an infinite formal power series; we discuss its algebraic...

Leaping convergents of Hurwitz continued fractions

Takao Komatsu (2011)

Discussiones Mathematicae - General Algebra and Applications

Let pₙ/qₙ = [a₀;a₁,...,aₙ] be the n-th convergent of the continued fraction expansion of [a₀;a₁,a₂,...]. Leaping convergents are those of every r-th convergent p r n + i / q r n + i (n = 0,1,2,...) for fixed integers r and i with r ≥ 2 and i = 0,1,...,r-1. The leaping convergents for the e-type Hurwitz continued fractions have been studied. In special, recurrence relations and explicit forms of such leaping convergents have been treated. In this paper, we consider recurrence relations and explicit forms of the leaping...

Currently displaying 61 – 80 of 228