Displaying 81 – 100 of 228

Showing per page

Leaping convergents of Tasoev continued fractions

Takao Komatsu (2011)

Discussiones Mathematicae - General Algebra and Applications

Denote the n-th convergent of the continued fraction by pₙ/qₙ = [a₀;a₁,...,aₙ]. We give some explicit forms of leaping convergents of Tasoev continued fractions. For instance, [0;ua,ua²,ua³,...] is one of the typical types of Tasoev continued fractions. Leaping convergents are of the form p r n + i / q r n + i (n=0,1,2,...) for fixed integers r ≥ 2 and 0 ≤ i ≤ r-1.

Length of continued fractions in principal quadratic fields

Guillaume Grisel (1998)

Acta Arithmetica

Let d ≥ 2 be a square-free integer and for all n ≥ 0, let l ( ( d ) 2 n + 1 ) be the length of the continued fraction expansion of ( d ) 2 n + 1 . If ℚ(√d) is a principal quadratic field, then under a condition on the fundamental unit of ℤ[√d] we prove that there exist constants C₁ and C₂ such that C ( d ) 2 n + 1 l ( ( d ) 2 n + 1 ) C ( d ) 2 n + 1 for all large n. This is a generalization of a theorem of S. Chowla and S. S. Pillai [2] and an improvement in a particular case of a theorem of [6].

Multidimensional Gauss reduction theory for conjugacy classes of SL ( n , )

Oleg Karpenkov (2013)

Journal de Théorie des Nombres de Bordeaux

In this paper we describe the set of conjugacy classes in the group SL ( n , ) . We expand geometric Gauss Reduction Theory that solves the problem for SL ( 2 , ) to the multidimensional case, where ς -reduced Hessenberg matrices play the role of reduced matrices. Further we find complete invariants of conjugacy classes in GL ( n , ) in terms of multidimensional Klein-Voronoi continued fractions.

Currently displaying 81 – 100 of 228