Arithmetical identities of the Brauer-Rademacher type.
We consider positional numeration system with negative base , as introduced by Ito and Sadahiro. In particular, we focus on arithmetical properties of such systems when is a quadratic Pisot number. We study a class of roots of polynomials , , and show that in this case the set of finite -expansions is closed under addition, although it is not closed under subtraction. A particular example is , the golden ratio. For such , we determine the exact bound on the number of fractional digits...
Prvočísla a otázky s nimi spojené představují často jedny z nejtěžších problémů matematiky a mnohé z nich zůstávají stále otevřené. V tomto článku se zabýváme otázkou, jak blízko ke zvolenému číslu již můžeme nalézt nějaké prvočíslo. Na základě známých tvrzení lze vyslovit hypotézu, že z každého přirozeného čísla lze již změnou nejvýše dvou číslic získat prvočíslo. Úvahy, kterými rozvíjíme známé výsledky, jsou čistě aritmetické povahy. Vyslovená hypotéza, která je závislá na hypotéze z (Hanson,...
We establish new combinatorial transcendence criteria for continued fraction expansions. Let be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients of is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.
This paper studies the descriptional complexity of (i) sequences over a finite alphabet ; and (ii) subsets of (the natural numbers). If is a sequence over a finite alphabet , then we define the -automaticity of , to be the smallest possible number of states in any deterministic finite automaton that, for all with , takes expressed in base as input and computes . We give examples of sequences that have high automaticity in all bases ; for example, we show that the characteristic...
For each natural number we determine the average order of the elements in a cyclic group of order . We show that more than half of the contribution to comes from the primitive elements of order . It is therefore of interest to study also the function . We determine the mean behavior of , , , and also consider these functions in the multiplicative groups of finite fields.
Let Γ ⊂ ℚ * be a finitely generated subgroup and let p be a prime such that the reduction group Γₚ is a well defined subgroup of the multiplicative group ₚ*. We prove an asymptotic formula for the average of the number of primes p ≤ x for which [ₚ*:Γₚ] = m. The average is taken over all finitely generated subgroups , with and , with a range of uniformity for every i = 1,...,r. We also prove an asymptotic formula for the mean square of the error terms in the asymptotic formula with a similar...
We study values of the Euler function φ(n) taken on binary palindromes of even length. In particular, if denotes the set of binary palindromes with precisely 2ℓ binary digits, we derive an asymptotic formula for the average value of the Euler function on .