Displaying 221 – 240 of 1815

Showing per page

Arithmetics in numeration systems with negative quadratic base

Zuzana Masáková, Tomáš Vávra (2011)

Kybernetika

We consider positional numeration system with negative base - β , as introduced by Ito and Sadahiro. In particular, we focus on arithmetical properties of such systems when β is a quadratic Pisot number. We study a class of roots β > 1 of polynomials x 2 - m x - n , m n 1 , and show that in this case the set Fin ( - β ) of finite ( - β ) -expansions is closed under addition, although it is not closed under subtraction. A particular example is β = τ = 1 2 ( 1 + 5 ) , the golden ratio. For such β , we determine the exact bound on the number of fractional digits...

Aritmetika III – změny číslic vedoucí k prvočíslům aneb variace na Bertrandův postulát

Tomáš Kepka, A. Jančařík, Jakub Michal (2022)

Učitel matematiky

Prvočísla a otázky s nimi spojené představují často jedny z nejtěžších problémů matematiky a mnohé z nich zůstávají stále otevřené. V tomto článku se zabýváme otázkou, jak blízko ke zvolenému číslu již můžeme nalézt nějaké prvočíslo. Na základě známých tvrzení lze vyslovit hypotézu, že z každého přirozeného čísla lze již změnou nejvýše dvou číslic získat prvočíslo. Úvahy,  kterými rozvíjíme známé výsledky, jsou čistě aritmetické povahy. Vyslovená hypotéza, která je závislá na hypotéze z (Hanson,...

Automatic continued fractions are transcendental or quadratic

Yann Bugeaud (2013)

Annales scientifiques de l'École Normale Supérieure

We establish new combinatorial transcendence criteria for continued fraction expansions. Let  α = [ 0 ; a 1 , a 2 , ... ] be an algebraic number of degree at least three. One of our criteria implies that the sequence of partial quotients ( a ) 1 of  α is not ‘too simple’ (in a suitable sense) and cannot be generated by a finite automaton.

Automaticity IV : sequences, sets, and diversity

Jeffrey Shallit (1996)

Journal de théorie des nombres de Bordeaux

This paper studies the descriptional complexity of (i) sequences over a finite alphabet ; and (ii) subsets of N (the natural numbers). If ( s ( i ) ) i 0 is a sequence over a finite alphabet Δ , then we define the k -automaticity of s , A s k ( n ) , to be the smallest possible number of states in any deterministic finite automaton that, for all i with 0 i n , takes i expressed in base k as input and computes s ( i ) . We give examples of sequences that have high automaticity in all bases k ; for example, we show that the characteristic...

Average order in cyclic groups

Joachim von zur Gathen, Arnold Knopfmacher, Florian Luca, Lutz G. Lucht, Igor E. Shparlinski (2004)

Journal de Théorie des Nombres de Bordeaux

For each natural number n we determine the average order α ( n ) of the elements in a cyclic group of order n . We show that more than half of the contribution to α ( n ) comes from the ϕ ( n ) primitive elements of order n . It is therefore of interest to study also the function β ( n ) = α ( n ) / ϕ ( n ) . We determine the mean behavior of α , β , 1 / β , and also consider these functions in the multiplicative groups of finite fields.

Average r-rank Artin conjecture

Lorenzo Menici, Cihan Pehlivan (2016)

Acta Arithmetica

Let Γ ⊂ ℚ * be a finitely generated subgroup and let p be a prime such that the reduction group Γₚ is a well defined subgroup of the multiplicative group ₚ*. We prove an asymptotic formula for the average of the number of primes p ≤ x for which [ₚ*:Γₚ] = m. The average is taken over all finitely generated subgroups Γ = a , . . . , a r * , with a i and a i T i , with a range of uniformity T i > e x p ( 4 ( l o g x l o g l o g x ) 1 / 2 ) for every i = 1,...,r. We also prove an asymptotic formula for the mean square of the error terms in the asymptotic formula with a similar...

Average Value of the Euler Function on Binary Palindromes

William D. Banks, Igor E. Shparlinski (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

We study values of the Euler function φ(n) taken on binary palindromes of even length. In particular, if 2 denotes the set of binary palindromes with precisely 2ℓ binary digits, we derive an asymptotic formula for the average value of the Euler function on 2 .

Currently displaying 221 – 240 of 1815