Displaying 401 – 420 of 1815

Showing per page

Digit sets of integral self-affine tiles with prime determinant

Jian-Lin Li (2006)

Studia Mathematica

Let M ∈ Mₙ(ℤ) be expanding such that |det(M)| = p is a prime and pℤⁿ ⊈ M²(ℤⁿ). Let D ⊂ ℤⁿ be a finite set with |D| = |det(M)|. Suppose the attractor T(M,D) of the iterated function system ϕ d ( x ) = M - 1 ( x + d ) d D has positive Lebesgue measure. We prove that (i) if D ⊈ M(ℤⁿ), then D is a complete set of coset representatives of ℤⁿ/M(ℤⁿ); (ii) if D ⊆ M(ℤⁿ), then there exists a positive integer γ such that D = M γ D , where D₀ is a complete set of coset representatives of ℤⁿ/M(ℤⁿ). This improves the corresponding results of Kenyon,...

Digital expansion of exponential sequences

Michael Fuchs (2002)

Journal de théorie des nombres de Bordeaux

We consider the q -ary digital expansion of the first N terms of an exponential sequence a n . Using a result due to Kiss and Tichy [8], we prove that the average number of occurrences of an arbitrary digital block in the last c log N digits is asymptotically equal to the expected value. Under stronger assumptions we get a similar result for the first ( log N ) 3 2 - ϵ digits, where ϵ is a positive constant. In both methods, we use estimations of exponential sums and the concept of discrepancy of real sequences modulo 1 ...

Discrete planes, 2 -actions, Jacobi-Perron algorithm and substitutions

Pierre Arnoux, Valérie Berthé, Shunji Ito (2002)

Annales de l’institut Fourier

We introduce two-dimensional substitutions generating two-dimensional sequences related to discrete approximations of irrational planes. These two-dimensional substitutions are produced by the classical Jacobi-Perron continued fraction algorithm, by the way of induction of a 2 -action by rotations on the circle. This gives a new geometric interpretation of the Jacobi-Perron algorithm, as a map operating on the parameter space of 2 -actions by rotations.

Discretization of prime counting functions, convexity and the Riemann hypothesis

Emre Alkan (2023)

Czechoslovak Mathematical Journal

We study tails of prime counting functions. Our approach leads to representations with a main term and an error term for the asymptotic size of each tail. It is further shown that the main term is of a specific shape and can be written discretely as a sum involving probabilities of certain events belonging to a perturbed binomial distribution. The limitations of the error term in our representation give us equivalent conditions for various forms of the Riemann hypothesis, for classical type zero-free...

Currently displaying 401 – 420 of 1815