On multiple zeros of Bernoulli polynomials
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers and respectively, such that and are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
Two linear numeration systems, with characteristic polynomial equal to the minimal polynomial of two Pisot numbers β and γ respectively, such that β and γ are multiplicatively dependent, are considered. It is shown that the conversion between one system and the other one is computable by a finite automaton. We also define a sequence of integers which is equal to the number of periodic points of a sofic dynamical system associated with some Parry number.
We improve known bounds for the maximum number of pairwise disjoint arithmetic progressions using distinct moduli less than x. We close the gap between upper and lower bounds even further under the assumption of a conjecture from combinatorics about Δ-systems (also known as sunflowers).
Let and let be the -generalized Pell sequence defined by for with initial conditions In this study, we handle the equation in positive integers , , , such that and give an upper bound on Also, we will show that the equation with has only one solution given by