Displaying 21 – 40 of 63

Showing per page

Nombres de racines d’un polynôme entier modulo q

Monique Branton, Olivier Ramaré (1998)

Journal de théorie des nombres de Bordeaux

Nous montrons que l’ensemble des racines modulo une puissance d’un nombre premier d’un polynôme à coefficients entiers de degré d est une union d’au plus d progressions arithmétiques de modules assez grands. Nous en déduisons une majoration du nombre de ses racines dans un intervalle réel court.

Nonanalyticity of solutions to t u = ² x u + u ²

Grzegorz Łysik (2003)

Colloquium Mathematicae

It is proved that the solution to the initial value problem t u = ² x u + u ² , u(0,x) = 1/(1+x²), does not belong to the Gevrey class G s in time for 0 ≤ s < 1. The proof is based on an estimation of a double sum of products of binomial coefficients.

Noncirculant Toeplitz matrices all of whose powers are Toeplitz

Kent Griffin, Jeffrey L. Stuart, Michael J. Tsatsomeros (2008)

Czechoslovak Mathematical Journal

Let a , b and c be fixed complex numbers. Let M n ( a , b , c ) be the n × n Toeplitz matrix all of whose entries above the diagonal are a , all of whose entries below the diagonal are b , and all of whose entries on the diagonal are c . For 1 k n , each k × k principal minor of M n ( a , b , c ) has the same value. We find explicit and recursive formulae for the principal minors and the characteristic polynomial of M n ( a , b , c ) . We also show that all complex polynomials in M n ( a , b , c ) are Toeplitz matrices. In particular, the inverse of M n ( a , b , c ) is a Toeplitz matrix when...

Non-degenerate Hilbert cubes in random sets

Csaba Sándor (2007)

Journal de Théorie des Nombres de Bordeaux

A slight modification of the proof of Szemerédi’s cube lemma gives that if a set S [ 1 , n ] satisfies | S | n 2 , then S must contain a non-degenerate Hilbert cube of dimension log 2 log 2 n - 3 . In this paper we prove that in a random set S determined by Pr { s S } = 1 2 for 1 s n , the maximal dimension of non-degenerate Hilbert cubes is a.e. nearly log 2 log 2 n + log 2 log 2 log 2 n and determine the threshold function for a non-degenerate k -cube.

Nonvanishing of a certain Bernoulli number and a related topic

Humio Ichimura (2013)

Acta Arithmetica

Let p = 1 + 2 e + 1 q be an odd prime number with q an odd integer. Let δ (resp. φ) be an odd (resp. even) Dirichlet character of conductor p and order 2 e + 1 (resp. order d φ dividing q), and let ψₙ be an even character of conductor p n + 1 and order pⁿ. We put χ = δφψₙ, whose value is contained in K = ( ζ ( p - 1 ) p ) . It is well known that the Bernoulli number B 1 , χ is not zero, which is shown in an analytic way. In the extreme cases d φ = 1 and q, we show, in an algebraic and elementary manner, a stronger nonvanishing result: T r n / 1 ( ξ B 1 , χ ) 0 for any pⁿth root ξ...

Currently displaying 21 – 40 of 63