Displaying 21 – 40 of 173

Showing per page

The Bernoullian of a Matrix. (A Generalization of the Bernoulli Numbers)

Esayas George Kundert (1982)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Si associano ad una matrice infinita di un certo tipo altre due matrici dello stesso tipo, dette rispettivamente bernoulliana e antibernoulliana di A. Si studiano alcune proprietà di queste matrici. Si ottiene in tal via una generalizzazione dei classici numeri di Bernoulli.

The Büchi sequences and Hilbert's Tenth Problem

(2016)

Banach Center Publications

In this short survey paper we state the Büchi conjecture and discuss its relations with the Hilbert Tenth Problem. We give some generalizations of the conjecture, and include some numerical examples.

The cardinality of sumsets: different summands

Brendan Murphy, Eyvindur Ari Palsson, Giorgis Petridis (2015)

Acta Arithmetica

We offer a complete answer to the following question on the growth of sumsets in commutative groups. Let h be a positive integer and A , B , . . . , B h be finite sets in a commutative group. We bound | A + B + . . . + B h | from above in terms of |A|, |A + B₁|, ..., | A + B h | and h. Extremal examples, which demonstrate that the bound is asymptotically sharp in all parameters, are furthermore provided.

The common division topology on

José del Carmen Alberto-Domínguez, Gerardo Acosta, Maira Madriz-Mendoza (2022)

Commentationes Mathematicae Universitatis Carolinae

A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider a topology τ S on the set of natural numbers. We then present properties of the topological space ( , τ S ) , some of them involve the closure of a set with respect to this topology, while others describe subsets which are either totally Brown or totally separated. Our theorems generalize results proved by P. Szczuka in 2013, 2014, 2016 and by...

The cube recurrence.

Carroll, Gabriel D., Speyer, David (2004)

The Electronic Journal of Combinatorics [electronic only]

The cyclicity problem for the images of Q-rational series

Juha Honkala (2011)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.

The cyclicity problem for the images of Q-rational series

Juha Honkala (2012)

RAIRO - Theoretical Informatics and Applications

We show that it is decidable whether or not a given Q-rational series in several noncommutative variables has a cyclic image. By definition, a series r has a cyclic image if there is a rational number q such that all nonzero coefficients of r are integer powers of q.

The Davenport constant of a box

Alain Plagne (2015)

Acta Arithmetica

Given an additively written abelian group G and a set X ⊆ G, we let (X) denote the monoid of zero-sum sequences over X and (X) the Davenport constant of (X), namely the supremum of the positive integers n for which there exists a sequence x₁⋯xₙ in (X) such that i I x i 0 for each non-empty proper subset I of 1,...,n. In this paper, we mainly investigate the case when G is a power of ℤ and X is a box (i.e., a product of intervals of G). Some mixed sets (e.g., the product of a group by a box) are studied...

Currently displaying 21 – 40 of 173