Displaying 61 – 80 of 295

Showing per page

Some alternating sums of Lucas numbers

Zvonko Čerin (2005)

Open Mathematics

We consider alternating sums of squares of odd and even terms of the Lucas sequence and alternating sums of their products. These alternating sums have nice representations as products of appropriate Fibonacci and Lucas numbers.

Some Borel measures associated with the generalized Collatz mapping

K. Matthews (1992)

Colloquium Mathematicae

This paper is a continuation of a recent paper [2], in which the authors studied some Markov matrices arising from a mapping T:ℤ → ℤ, which generalizes the famous 3x+1 mapping of Collatz. We extended T to a mapping of the polyadic numbers ^ and construct finitely many ergodic Borel measures on ^ which heuristically explain the limiting frequencies in congruence classes, observed for integer trajectories.

Some congruences involving binomial coefficients

Hui-Qin Cao, Zhi-Wei Sun (2015)

Colloquium Mathematicae

Binomial coefficients and central trinomial coefficients play important roles in combinatorics. Let p > 3 be a prime. We show that T p - 1 ( p / 3 ) 3 p - 1 ( m o d p ² ) , where the central trinomial coefficient Tₙ is the constant term in the expansion of ( 1 + x + x - 1 ) . We also prove three congruences modulo p³ conjectured by Sun, one of which is k = 0 p - 1 p - 1 k 2 k k ( ( - 1 ) k - ( - 3 ) - k ) ( p / 3 ) ( 3 p - 1 - 1 ) ( m o d p ³ ) . In addition, we get some new combinatorial identities.

Some finite generalizations of Euler's pentagonal number theorem

Ji-Cai Liu (2017)

Czechoslovak Mathematical Journal

Euler's pentagonal number theorem was a spectacular achievement at the time of its discovery, and is still considered to be a beautiful result in number theory and combinatorics. In this paper, we obtain three new finite generalizations of Euler's pentagonal number theorem.

Currently displaying 61 – 80 of 295