Some generalizations in additive number theory.
Let be a convergent series of positive real numbers. L. Olivier proved that if the sequence is non-increasing, then . In the present paper: (a) We formulate and prove a necessary and sufficient condition for having ; Olivier’s theorem is a consequence of our Theorem . (b) We prove properties analogous to Olivier’s property when the usual convergence is replaced by the -convergence, that is a convergence according to an ideal of subsets of . Again, Olivier’s theorem is a consequence of...
Melham discovered the Fibonacci identity . He then considered the generalized sequence Wₙ where W₀ = a, W₁ = b, and and a, b, p and q are integers and q ≠ 0. Letting e = pab - qa² - b², he proved the following identity: . There are similar differences of products of Fibonacci numbers, like this one discovered by Fairgrieve and Gould: . We prove similar identities. For example, a generalization of Fairgrieve and Gould’s identity is .
In this paper, by considering higher-order degenerate Bernoulli and Euler polynomials which were introduced by Carlitz, we investigate some properties of mixed-type of those polynomials. In particular, we give some identities of mixed-type degenerate special polynomials which are derived from the fermionic integrals on Zp and the bosonic integrals on Zp.
In this paper we consider two parameters generalization of the Fibonacci numbers and Pell numbers, named as the -Fibonacci numbers. We give some new interpretations of these numbers. Moreover using these interpretations we prove some identities for the -Fibonacci numbers.
We derive several new transformations relating WP-Bailey pairs. We also consider the corresponding transformations relating standard Bailey pairs, and as a consequence, derive some quite general expansions for products of theta functions which can also be expressed as certain types of Lambert series.