Displaying 81 – 100 of 133

Showing per page

Prime numbers along Rudin–Shapiro sequences

Christian Mauduit, Joël Rivat (2015)

Journal of the European Mathematical Society

For a large class of digital functions f , we estimate the sums n x Λ ( n ) f ( n ) (and n x μ ( n ) f ( n ) , where Λ denotes the von Mangoldt function (and μ the Möbius function). We deduce from these estimates a Prime Number Theorem (and a Möbius randomness principle) for sequences of integers with digit properties including the Rudin-Shapiro sequence and some of its generalizations.

Prime numbers with Beatty sequences

William D. Banks, Igor E. Shparlinski (2009)

Colloquium Mathematicae

A study of certain Hamiltonian systems has led Y. Long to conjecture the existence of infinitely many primes which are not of the form p = 2⌊αn⌋ + 1, where 1 < α < 2 is a fixed irrational number. An argument of P. Ribenboim coupled with classical results about the distribution of fractional parts of irrational multiples of primes in an arithmetic progression immediately implies that this conjecture holds in a much more precise asymptotic form. Motivated by this observation, we give an asymptotic...

Primefree shifted Lucas sequences

Lenny Jones (2015)

Acta Arithmetica

We say a sequence = ( s ) n 0 is primefree if |sₙ| is not prime for all n ≥ 0, and to rule out trivial situations, we require that no single prime divides all terms of . In this article, we focus on the particular Lucas sequences of the first kind, a = ( u ) n 0 , defined by u₀ = 0, u₁ = 1, and uₙ = aun-1 + un-2 for n≥2, where a is a fixed integer. More precisely, we show that for any integer a, there exist infinitely many integers k such that both of the shifted sequences a ± k are simultaneously primefree. This result extends...

Primitive divisors of Lucas and Lehmer sequences, II

Paul M. Voutier (1996)

Journal de théorie des nombres de Bordeaux

Let α and β are conjugate complex algebraic integers which generate Lucas or Lehmer sequences. We present an algorithm to search for elements of such sequences which have no primitive divisors. We use this algorithm to prove that for all α and β with h ( β / α ) 4 , the n -th element of these sequences has a primitive divisor for n &gt; 30 . In the course of proving this result, we give an improvement of a result of Stewart concerning more general sequences.

Primitive Lucas d-pseudoprimes and Carmichael-Lucas numbers

Walter Carlip, Lawrence Somer (2007)

Colloquium Mathematicae

Let d be a fixed positive integer. A Lucas d-pseudoprime is a Lucas pseudoprime N for which there exists a Lucas sequence U(P,Q) such that the rank of appearance of N in U(P,Q) is exactly (N-ε(N))/d, where the signature ε(N) = (D/N) is given by the Jacobi symbol with respect to the discriminant D of U. A Lucas d-pseudoprime N is a primitive Lucas d-pseudoprime if (N-ε(N))/d is the maximal rank of N among Lucas sequences U(P,Q) that exhibit N as a Lucas pseudoprime. We derive...

Primitive substitutive numbers are closed under rational multiplication

Pallavi Ketkar, Luca Q. Zamboni (1998)

Journal de théorie des nombres de Bordeaux

Let M ( r ) denote the set of real numbers α whose base- r digit expansion is ultimately primitive substitutive, i.e., contains a tail which is the image (under a letter to letter morphism) of a fixed point of a primitive substitution. We show that the set M ( r ) is closed under multiplication by rational numbers, but not closed under addition.

Currently displaying 81 – 100 of 133