Displaying 141 – 160 of 173

Showing per page

Topological aspects of infinitude of primes in arithmetic progressions

František Marko, Štefan Porubský (2015)

Colloquium Mathematicae

We investigate properties of coset topologies on commutative domains with an identity, in particular, the 𝓢-coprime topologies defined by Marko and Porubský (2012) and akin to the topology defined by Furstenberg (1955) in his proof of the infinitude of rational primes. We extend results about the infinitude of prime or maximal ideals related to the Dirichlet theorem on the infinitude of primes from Knopfmacher and Porubský (1997), and correct some results from that paper. Then we determine cluster...

Totally Brown subsets of the Golomb space and the Kirch space

José del Carmen Alberto-Domínguez, Gerardo Acosta, Gerardo Delgadillo-Piñón (2022)

Commentationes Mathematicae Universitatis Carolinae

A topological space X is totally Brown if for each n { 1 } and every nonempty open subsets U 1 , U 2 , ... , U n of X we have cl X ( U 1 ) cl X ( U 2 ) cl X ( U n ) . Totally Brown spaces are connected. In this paper we consider the Golomb topology τ G on the set of natural numbers, as well as the Kirch topology τ K on . Then we examine subsets of these spaces which are totally Brown. Among other results, we characterize the arithmetic progressions which are either totally Brown or totally separated in ( , τ G ) . We also show that ( , τ G ) and ( , τ K ) are aposyndetic. Our results...

Towards Bauer's theorem for linear recurrence sequences

Mariusz Skałba (2003)

Colloquium Mathematicae

Consider a recurrence sequence ( x k ) k of integers satisfying x k + n = a n - 1 x k + n - 1 + . . . + a x k + 1 + a x k , where a , a , . . . , a n - 1 are fixed and a₀ ∈ -1,1. Assume that x k > 0 for all sufficiently large k. If there exists k₀∈ ℤ such that x k < 0 then for each negative integer -D there exist infinitely many rational primes q such that q | x k for some k ∈ ℕ and (-D/q) = -1.

Tribonacci modulo 2 t and 11 t

Jiří Klaška (2008)

Mathematica Bohemica

Our previous research was devoted to the problem of determining the primitive periods of the sequences ( G n mod p t ) n = 1 where ( G n ) n = 1 is a Tribonacci sequence defined by an arbitrary triple of integers. The solution to this problem was found for the case of powers of an arbitrary prime p 2 , 11 . In this paper, which could be seen as a completion of our preceding investigation, we find solution for the case of singular primes p = 2 , 11 .

Tribonacci modulo p t

Jiří Klaška (2008)

Mathematica Bohemica

Our research was inspired by the relations between the primitive periods of sequences obtained by reducing Tribonacci sequence by a given prime modulus p and by its powers p t , which were deduced by M. E. Waddill. In this paper we derive similar results for the case of a Tribonacci sequence that starts with an arbitrary triple of integers.

Trivial points on towers of curves

Xavier Xarles (2013)

Journal de Théorie des Nombres de Bordeaux

In order to study the behavior of the points in a tower of curves, we introduce and study trivial points on towers of curves, and we discuss their finiteness over number fields. We relate the problem of proving that the only rational points are the trivial ones at some level of the tower, to the unboundeness of the gonality of the curves in the tower, which we show under some hypothesis.

Currently displaying 141 – 160 of 173