Displaying 161 – 180 of 352

Showing per page

A problem of Rankin on sets without geometric progressions

Melvyn B. Nathanson, Kevin O'Bryant (2015)

Acta Arithmetica

A geometric progression of length k and integer ratio is a set of numbers of the form a , a r , . . . , a r k - 1 for some positive real number a and integer r ≥ 2. For each integer k ≥ 3, a greedy algorithm is used to construct a strictly decreasing sequence ( a i ) i = 1 of positive real numbers with a₁ = 1 such that the set G ( k ) = i = 1 ( a 2 i , a 2 i - 1 ] contains no geometric progression of length k and integer ratio. Moreover, G ( k ) is a maximal subset of (0,1] that contains no geometric progression of length k and integer ratio. It is also proved that there is...

A propos de la fonction X d’Erdös et Graham

Alain Plagne (2004)

Annales de l’institut Fourier

Nous améliorons les meilleures bornes supérieures et inférieures connues pour la fonction X d’Erdös et Graham définie par X ( h ) = max h 𝒜 max a 𝒜 * ord * ( 𝒜 a ) , où le premier maximum est pris sur toutes les bases (exactes) 𝒜 d’ordre au plus h , où 𝒜 * désigne le sous-ensemble de 𝒜 composé des éléments a tels que 𝒜 { a } soit encore une base et où, enfin, ord * ( 𝒜 ) désigne l’ordre (exact) de 𝒜 . Notre étude nous conduira, entre autres, à prouver un nouveau résultat additif général découlant de la méthode isopérimétrique et à étudier trois problèmes additifs...

A q -congruence for a truncated 4 ϕ 3 series

Victor J. W. Guo, Chuanan Wei (2021)

Czechoslovak Mathematical Journal

Let Φ n ( q ) denote the n th cyclotomic polynomial in q . Recently, Guo, Schlosser and Zudilin proved that for any integer n > 1 with n 1 ( mod 4 ) , k = 0 n - 1 ( q - 1 ; q 2 ) k 2 ( q - 2 ; q 4 ) k ( q 2 ; q 2 ) k 2 ( q 4 ; q 4 ) k q 6 k 0 ( mod Φ n ( q ) 2 ) , where ( a ; q ) m = ( 1 - a ) ( 1 - a q ) ( 1 - a q m - 1 ) . In this note, we give a generalization of the above q -congruence to the modulus Φ n ( q ) 3 case. Meanwhile, we give a corresponding q -congruence modulo Φ n ( q ) 2 for n 3 ( mod 4 ) . Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a 4 ϕ 3 summation formula.

Currently displaying 161 – 180 of 352