A number-theoretic conjecture and its implication for set theory.
A geometric progression of length k and integer ratio is a set of numbers of the form for some positive real number a and integer r ≥ 2. For each integer k ≥ 3, a greedy algorithm is used to construct a strictly decreasing sequence of positive real numbers with a₁ = 1 such that the set contains no geometric progression of length k and integer ratio. Moreover, is a maximal subset of (0,1] that contains no geometric progression of length k and integer ratio. It is also proved that there is...
Nous améliorons les meilleures bornes supérieures et inférieures connues pour la fonction d’Erdös et Graham définie par , où le premier maximum est pris sur toutes les bases (exactes) d’ordre au plus , où désigne le sous-ensemble de composé des éléments tels que soit encore une base et où, enfin, désigne l’ordre (exact) de . Notre étude nous conduira, entre autres, à prouver un nouveau résultat additif général découlant de la méthode isopérimétrique et à étudier trois problèmes additifs...
Let denote the th cyclotomic polynomial in . Recently, Guo, Schlosser and Zudilin proved that for any integer with , where . In this note, we give a generalization of the above -congruence to the modulus case. Meanwhile, we give a corresponding -congruence modulo for . Our proof is based on the ‘creative microscoping’ method, recently developed by Guo and Zudilin, and a summation formula.