Displaying 141 – 160 of 352

Showing per page

A note on the congruence n p k m p k n m ( mod p r )

Romeo Meštrović (2012)

Czechoslovak Mathematical Journal

In the paper we discuss the following type congruences: n p k m p k m n ( mod p r ) , where p is a prime, n , m , k and r are various positive integers with n m 1 , k 1 and r 1 . Given positive integers k and r , denote by W ( k , r ) the set of all primes p such that the above congruence holds for every pair of integers n m 1 . Using Ljunggren’s and Jacobsthal’s type congruences, we establish several characterizations of sets W ( k , r ) and inclusion relations between them for various values k and r . In particular, we prove that W ( k + i , r ) = W ( k - 1 , r ) for all k 2 , i 0 and 3 r 3 k , and W ( k , r ) = W ( 1 , r ) for...

A note on uniform or Banach density

Georges Grekos, Vladimír Toma, Jana Tomanová (2010)

Annales mathématiques Blaise Pascal

In this note we present and comment three equivalent definitions of the so called uniform or Banach density of a set of positive integers.

A note on univoque self-sturmian numbers

Jean-Paul Allouche (2008)

RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications

We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of unimodal continuous maps from the unit interval into itself, but it also characterizes univoque real numbers; the other is a disguised version of the set of characteristic sturmian sequences. As a corollary to our study we obtain that a real number β in ( 1 , 2 ) is univoque and self-sturmian if and only if the β -expansion of 1 is of the form 1 v , where v is a characteristic...

A note on univoque self-Sturmian numbers

Jean-Paul Allouche (2010)

RAIRO - Theoretical Informatics and Applications

We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of unimodal continuous maps from the unit interval into itself, but it also characterizes univoque real numbers; the other is a disguised version of the set of characteristic Sturmian sequences. As a corollary to our study we obtain that a real number β in (1,2) is univoque and self-Sturmian if and only if the β-expansion of 1 is of the form 1v, where v is a characteristic...

Currently displaying 141 – 160 of 352