The search session has expired. Please query the service again.

Displaying 1901 – 1920 of 2472

Showing per page

Sets of k -recurrence but not ( k + 1 ) -recurrence

Nikos Frantzikinakis, Emmanuel Lesigne, Máté Wierdl (2006)

Annales de l’institut Fourier

For every k , we produce a set of integers which is k -recurrent but not ( k + 1 ) -recurrent. This extends a result of Furstenberg who produced a 1 -recurrent set which is not 2 -recurrent. We discuss a similar result for convergence of multiple ergodic averages. We also point out a combinatorial consequence related to Szemerédi’s theorem.

Short remark on Fibonacci-Wieferich primes

Jiří Klaška (2007)

Acta Mathematica Universitatis Ostraviensis

This paper has been inspired by the endeavour of a large number of mathematicians to discover a Fibonacci-Wieferich prime. An exhaustive computer search has not been successful up to the present even though there exists a conjecture that there are infinitely many such primes. This conjecture is based on the assumption that the probability that a prime p is Fibonacci-Wieferich is equal to 1 / p . According to our computational results and some theoretical consideratons, another form of probability can...

Sidon basis in polynomial rings over finite fields

Wentang Kuo, Shuntaro Yamagishi (2021)

Czechoslovak Mathematical Journal

Let 𝔽 q [ t ] denote the polynomial ring over 𝔽 q , the finite field of q elements. Suppose the characteristic of 𝔽 q is not 2 or 3 . We prove that there exist infinitely many N such that the set { f 𝔽 q [ t ] : deg f < N } contains a Sidon set which is an additive basis of order 3 .

Sign changes of certain arithmetical function at prime powers

Rishabh Agnihotri, Kalyan Chakraborty (2021)

Czechoslovak Mathematical Journal

We examine an arithmetical function defined by recursion relations on the sequence { f ( p k ) } k and obtain sufficient condition(s) for the sequence to change sign infinitely often. As an application we give criteria for infinitely many sign changes of Chebyshev polynomials and that of sequence formed by the Fourier coefficients of a cusp form.

Skolem–Mahler–Lech type theorems and Picard–Vessiot theory

Michael Wibmer (2015)

Journal of the European Mathematical Society

We show that three problems involving linear difference equations with rational function coefficients are essentially equivalent. The first problem is the generalization of the classical Skolem–Mahler–Lech theorem to rational function coefficients. The second problem is whether or not for a given linear difference equation there exists a Picard–Vessiot extension inside the ring of sequences. The third problem is a certain special case of the dynamical Mordell–Lang conjecture. This allows us to deduce...

Currently displaying 1901 – 1920 of 2472