Displaying 61 – 80 of 197

Showing per page

Jacobi symbols, ambiguous ideals, and continued fractions

R. A. Mollin (1998)

Acta Arithmetica

The purpose of this paper is to generalize some seminal results in the literature concerning the interrelationships between Legendre symbols and continued fractions. We introduce the power of ideal theory into the arena. This allows significant improvements over the existing results via the infrastructure of real quadratic fields.

Jeśmanowicz' conjecture with congruence relations

Yasutsugu Fujita, Takafumi Miyazaki (2012)

Colloquium Mathematicae

Let a,b and c be relatively prime positive integers such that a²+b² = c². We prove that if b 0 ( m o d 2 r ) and b ± 2 r ( m o d a ) for some non-negative integer r, then the Diophantine equation a x + b y = c z has only the positive solution (x,y,z) = (2,2,2). We also show that the same holds if c ≡ -1 (mod a).

Leonard Dickson’s History of the Theory of Numbers: An historical study with mathematical implications

Della D. Fenster (1999)

Revue d'histoire des mathématiques

In 1911, the research mathematician Leonard Dickson embarked on a historical study of the theory of numbers which culminated in the publication of his three-volume History of the Theory of Numbers. This paper discusses the genesis of this work, the historiographic style revealed therein, and the mathematical contributions which arose out of it.

Les nombres de Lucas et Lehmer sans diviseur primitif

Mourad Abouzaid (2006)

Journal de Théorie des Nombres de Bordeaux

Y. Bilu, G. Hanrot et P.M. Voutier ont montré que pour toute paire de Lucas ou de Lehmer ( α , β ) et pour tout n > 30 , les entiers, dits nombres de Lucas (ou de Lehmer) u n ( α , β ) admettaient un diviseur primitif. L’objet de ce papier est de compléter la liste des nombres de Lucas et de Lehmer défectueux donnée par P.M. Voutier, afin d’en avoir une liste exhaustive.

Local-global principle for quadratic forms over fraction fields of two-dimensional henselian domains

Yong HU (2012)

Annales de l’institut Fourier

Let R be a 2-dimensional normal excellent henselian local domain in which 2 is invertible and let L and k be its fraction field and residue field respectively. Let Ω R be the set of rank 1 discrete valuations of L corresponding to codimension 1 points of regular proper models of Spec R . We prove that a quadratic form q over L satisfies the local-global principle with respect to Ω R in the following two cases: (1) q has rank 3 or 4; (2) q has rank 5 and R = A [ [ y ] ] , where A is a complete discrete valuation ring with...

Nil-clean and unit-regular elements in certain subrings of 𝕄 2 ( )

Yansheng Wu, Gaohua Tang, Guixin Deng, Yiqiang Zhou (2019)

Czechoslovak Mathematical Journal

An element in a ring is clean (or, unit-regular) if it is the sum (or, the product) of an idempotent and a unit, and is nil-clean if it is the sum of an idempotent and a nilpotent. Firstly, we show that Jacobson’s lemma does not hold for nil-clean elements in a ring, answering a question posed by Koşan, Wang and Zhou (2016). Secondly, we present new counter-examples to Diesl’s question whether a nil-clean element is clean in a ring. Lastly, we give new examples of unit-regular elements that are...

Normal bivariate Birkhoff interpolation schemes and Pell equation

Marius Crainic, Nicolae Crainic (2009)

Commentationes Mathematicae Universitatis Carolinae

Finding the normal Birkhoff interpolation schemes where the interpolation space and the set of derivatives both have a given regular “shape” often amounts to number-theoretic equations. In this paper we discuss the relevance of the Pell equation to the normality of bivariate schemes for different types of “shapes”. In particular, when looking at triangular shapes, we will see that the conjecture in Lorentz R.A., Multivariate Birkhoff Interpolation, Lecture Notes in Mathematics, 1516, Springer, Berlin-Heidelberg,...

Currently displaying 61 – 80 of 197