Displaying 81 – 100 of 197

Showing per page

On fundamental solutions of binary quadratic form equations

Keith R. Matthews, John P. Robertson, Anitha Srinivasan (2015)

Acta Arithmetica

We show that, with suitable modification, the upper bound estimates of Stolt for the fundamental integer solutions of the Diophantine equation Au²+Buv+Cv²=N, where A>0, N≠0 and B²-4AC is positive and nonsquare, in fact characterize the fundamental solutions. As a corollary, we get a corresponding result for the equation u²-dv²=N, where d is positive and nonsquare, in which case the upper bound estimates were obtained by Nagell and Chebyshev.

On Obláth's problem.

Gica, Alexandru, Panaitopol, Laurenţiu (2003)

Journal of Integer Sequences [electronic only]

Currently displaying 81 – 100 of 197