On some arithmetical properties of Lucas and Lehmer numbers
Let denote the ith prime. We conjecture that there are precisely 28 solutions to the equation in positive integers n and α₁,..., . This conjecture implies an explicit description of the set of solutions to the Brocard-Ramanujan equation. We also propose another variant of the Brocard-Ramanujan problem: describe the set of solutions in non-negative integers of the equation n! + A = x₁²+x₂²+x₃² (A fixed).
Let be an odd prime. By using the elementary methods we prove that: (1) if , the Diophantine equation has no positive integer solution except when or is of the form , where is an odd positive integer. (2) if , , then the Diophantine equation has no positive integer solution.
P. 294, line 14: For “Satz 8” read “Satz 7”, and for “equation (10)” read “equation (13)”.
There exist many results about the Diophantine equation , where and . In this paper, we suppose that , is an odd integer and a power of a prime number. Also let be an integer such that the number of prime divisors of is less than or equal to . Then we solve completely the Diophantine equation for infinitely many values of . This result finds frequent applications in the theory of finite groups.
In this paper we complete the solution to the equation w+x+y = z, where w, x, y, and z are positive integers and wxyz has the form 2r 3s 5t, with r, s, and t non negative integers. Here we consider the case 1 < w ≤ x ≤ y, the remaining case having been dealt with in our paper: On the Diophantine equation 1+ X + Y = Z, Rocky Mountain J. of Math. This work extends earlier work of the authors in the field of exponential Diophantine equations.