How to explicitly solve a Thue-Mahler equation
Let be a Hecke–Maass cusp form of eigenvalue and square-free level . Normalize the hyperbolic measure such that and the form such that . It is shown that for all . This generalizes simultaneously the current best bounds in the eigenvalue and level aspects.
The purpose of this article is twofold. The first is to find the dimension of the set of integral points off divisors in subgeneral position in a projective algebraic variety , where k is a number field. As consequences, the results of Ru-Wong (1991), Ru (1993), Noguchi-Winkelmann (2003) and Levin (2008) are recovered. The second is to show the complete hyperbolicity of the complement of divisors in subgeneral position in a projective algebraic variety
This article provides necessary and sufficient conditions for both of the Diophantine equations X^2 − DY^2 = m1 and x^2 − Dy^2 = m2 to have primitive solutions when m1 , m2 ∈ Z, and D ∈ N is not a perfect square. This is given in terms of the ideal theory of the underlying real quadratic order Z[√D].
Soient trois éléments de l’ensemble des entiers > (resp. ) des polynômes complexes) premiers entre eux ; on note le produit des facteurs premiers (resp. le nombre des facteurs premiers dans ) du produit . La conjecture énonce que, pour tout , il existe pour lequel l’inégalité : avec max) est toujours vérifiée. Le théorème de Mason établit l’inégalité, (supposé > ) désignant le plus grand des degrés des polynômes . Les cas de triplets de polynômes où l’égalité...
The problem of determining power integral bases in algebraic number fields is equivalent to solving the corresponding index form equations. As is known (cf. Győry [25]), every index form equation can be reduced to an equation system consisting of unit equations in two variables over the normal closure of the original field. However, the unit rank of the normal closure is usually too large for practical use. In a recent paper Győry [27] succeeded in reducing index form equations to systems of unit...
In this note, particular inequalities of DVT-type in real and integer numbers are investigated.