Displaying 81 – 100 of 1554

Showing per page

A system of simultaneous congruences arising from trinomial exponential sums

Todd Cochrane, Jeremy Coffelt, Christopher Pinner (2006)

Journal de Théorie des Nombres de Bordeaux

For a prime p and positive integers < k < h < p with d = ( h , k , , p - 1 ) , we show that M , the number of simultaneous solutions x , y , z , w in p * to x h + y h = z h + w h , x k + y k = z k + w k , x + y = z + w , satisfies M 3 d 2 ( p - 1 ) 2 + 25 h k ( p - 1 ) . When h k = o ( p d 2 ) we obtain a precise asymptotic count on M . This leads to the new twisted exponential sum bound x = 1 p - 1 χ ( x ) e 2 π i f ( x ) / p 3 1 4 d 1 2 p 7 8 + 5 h k 1 4 p 5 8 , for trinomials f = a x h + b x k + c x , and to results on the average size of such sums.

A ternary Diophantine inequality over primes

Roger Baker, Andreas Weingartner (2014)

Acta Arithmetica

Let 1 < c < 10/9. For large real numbers R > 0, and a small constant η > 0, the inequality | p c + p c + p c - R | < R - η holds for many prime triples. This improves work of Kumchev [Acta Arith. 89 (1999)].

A variety of Euler's sum of powers conjecture

Tianxin Cai, Yong Zhang (2021)

Czechoslovak Mathematical Journal

We consider a variety of Euler’s sum of powers conjecture, i.e., whether the Diophantine system n = a 1 + a 2 + + a s - 1 , a 1 a 2 a s - 1 ( a 1 + a 2 + + a s - 1 ) = b s has positive integer or rational solutions n , b , a i , i = 1 , 2 , , s - 1 , s 3 . Using the theory of elliptic curves, we prove that it has no positive integer solution for s = 3 , but there are infinitely many positive integers n such that it has a positive integer solution for s 4 . As a corollary, for s 4 and any positive integer n , the above Diophantine system has a positive rational solution. Meanwhile, we give conditions such that...

Currently displaying 81 – 100 of 1554