Rational points on some elliptic surfaces
We present some results concerning the unirationality of the algebraic variety given by the equation , where k is a number field, K=k(α), α is a root of an irreducible polynomial h(x) = x³ + ax + b ∈ k[x] and f ∈ k[t]. We are mainly interested in the case of pure cubic extensions, i.e. a = 0 and b ∈ k∖k³. We prove that if deg f = 4 and contains a k-rational point (x₀,y₀,z₀,t₀) with f(t₀)≠0, then is k-unirational. A similar result is proved for a broad family of quintic polynomials f satisfying...
The sequence of balancing numbers is defined by the recurrence relation for with initial conditions and is called the th balancing number. In this paper, we find all repdigits in the base which are sums of four balancing numbers. As a result of our theorem,...