Fields of characteristic 2 with prescribed u-invariants.
Introduite par Witt en 1937, la théorie des formes quadratiques sur un corps joue un rôle central dans la démonstration des conjectures de Milnor par Voevodsky via les travaux pionniers de Rost qui y interviennent. Réciproquement, les méthodes de Rost et Voevodsky utilisant la théorie des motifs et les opérations de Steenrod motiviques révolutionnent la théorie des formes quadratiques et ont conduit à la démonstration de résultats de base qui semblaient auparavant inaccessibles. On expliquera notamment...
On associe à toute extension finie d’un corps de caractéristique 2 une forme quadratique non dégénérée de rang pair égal à où , dont on détermine les invariants. On applique ensuite cette étude à la recherche de polynômes dépendant de peu de paramètres permettant de définir des familles d’extensions de degré donné.