Displaying 81 – 100 of 115

Showing per page

Similitude des multiples des formes d’Albert en caractéristique 2

Detlev W. Hoffmann, Ahmed Laghribi (2013)

Bulletin de la Société Mathématique de France

Étant donnés F un corps commutatif de caractéristique 2 , γ 1 , γ 2 des formes bilinéaires d’Albert et π 1 , π 2 des k -formes quadratiques de Pfister, ou γ 1 , γ 2 des k -formes bilinéaires de Pfister et π 1 , π 2 des formes quadratiques d’Albert (resp. γ 1 , γ 2 des formes bilinéaires d’Albert et π 1 , π 2 des k -formes bilinéaires de Pfister avec la condition que γ i π i , i = 1 , 2 , soient anisotropes), alors on montre que γ 1 π 1 γ 2 π 2 I q k + 3 F (resp. I k + 3 F ) si et seulement si γ 1 π 1 est semblable à γ 2 π 2 . Un exemple montre que la condition de l’anisotropie est nécessaire dans le cas bilinéaire....

Spectral Real Semigroups

M. Dickmann, A. Petrovich (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

The notion of a real semigroup was introduced in [8] to provide a framework for the investigation of the theory of (diagonal) quadratic forms over commutative, unitary, semi-real rings. In this paper we introduce and study an outstanding class of such structures, that we call spectral real semigroups (SRS). Our main results are: (i) The existence of a natural functorial duality between the category of SRSs and that of hereditarily normal spectral spaces; (ii) Characterization of the SRSs as the...

The image of the natural homomorphism of Witt rings of orders in a global field

Beata Rothkegel (2013)

Acta Arithmetica

Let R be a Dedekind domain whose field of fractions is a global field. Moreover, let 𝓞 < R be an order. We examine the image of the natural homomorphism φ : W𝓞 → WR of the corresponding Witt rings. We formulate necessary and sufficient conditions for the surjectivity of φ in the case of all nonreal quadratic number fields, all real quadratic number fields K such that -1 is a norm in the extension K/ℚ, and all quadratic function fields.

Currently displaying 81 – 100 of 115