Relèvement et formes quadratiques à 4 variables
There is a Shimura lifting which sends cusp forms of a half-integral weight to holomorphic modular forms of an even integral weight. Niwa and Cipra studied this lifting using the theta series attached to an indefinite quadratic form; later, Borcherds and Bruinier extended this lifting to weakly holomorphic modular forms and harmonic weak Maass forms of weight 1/2, respectively. We apply Niwa's theta kernel to weak Maass forms by using a regularized integral. We show that the lifted function satisfies...