The Mean Square of Dirichlet Series Associated with Automorphic Forms.
In this paper we derive, using the Gauss summation theorem for hypergeometric series, a simple integral expression for the reciprocal of Euler’s beta function. This expression is similar in form to several well-known integrals for the beta function itself.We then apply our new formula to the study of Whittaker functions, which are special functions that arise in the Fourier theory for automorphic forms on the general linear group. Specifically, we deduce explicit integral representations of “fundamental”...
In the present article, we determine explicit uniformizations of modular curves attached to triangle Fuchsian groups with cusps. Their Hauptmoduln are obtained by integration of non-linear differential equations of the third order. Series expansions involving integral coefficients are calculated around the cusps as well as around the elliptic points. The method is an updated form of a differential construction of the elliptic modular function j, first performed by Dedekind in 1877. Subtle differences...