The arithmetic of the coefficients of half-integral weight Eisenstein series
Let be a nonzero cuspidal Hecke eigenform of weight and the trivial nebentypus , where the Fourier coefficients are real. Bruinier and Kohnen conjectured that the signs of are equidistributed. This conjecture was proved to be true by Inam, Wiese and Arias-de-Reyna for the subfamilies , where is a squarefree integer such that . Let and be natural numbers such that . In this work, we show that is equidistributed over any arithmetic progression .
1. Introduction. Let Q be a positive definite n × n matrix with integral entries and even diagonal entries. It is well known that the theta function , Im z > 0, is a modular form of weight n/2 on , where N is the level of Q, i.e. is integral and has even diagonal entries. This was proved by Schoeneberg [5] for even n and by Pfetzer [3] for odd n. Shimura [6] uses the Poisson summation formula to generalize their results for arbitrary n and he also computes the theta multiplier explicitly....