On a Conjecture of Hecke Concerning Elementary Class Number Formulas.
H. P. F. Swinnerton-Dyer determined the structure of the ring of modular forms modulo p in the elliptic modular case. In this paper, the structure of the ring of Hilbert modular forms modulo p is studied. In the case where the discriminant of corresponding quadratic field is 8 (or 5), the explicit structure is determined.
Let be the Rankin product -function for two Hilbert cusp forms and . This -function is in fact the standard -function of an automorphic representation of the algebraic group defined over a totally real field. Under the ordinarity assumption at a given prime for and , we shall construct a -adic analytic function of several variables which interpolates the algebraic part of for critical integers , regarding all the ingredients , and as variables.
We address the question of when an integer in a totally real number field can be written as the sum of three squared integers from the field and more generally whether it can be represented by a positive definite integral ternary quadratic form over the field. In recent work with Piatetski-Shapiro and Sarnak we have shown that every sufficiently large totally positive square free integer is globally integrally represented if and only if it is so locally at all places, thus essentially resolving...