The search session has expired. Please query the service again.
Mixed automorphic forms generalize elliptic modular forms, and they occur naturally as holomorphic forms of the highest degree on families of abelian varieties parametrized by a Riemann surface. We construct generalized Eisenstein series and Poincaré series, and prove that they are mixed automorphic forms.
Resnikoff [12] proved that weights of a non trivial singular modular form should be integral multiples of 1/2, 1, 2, 4 for the Siegel, Hermitian, quaternion and exceptional cases, respectively. The θ-functions in the Siegel, Hermitian and quaternion cases provide examples of singular modular forms (Krieg [10]). Shimura [15] obtained a modular form of half-integral weight by analytically continuing an Eisenstein series. Bump and Bailey suggested the possibility of applying an analogue of Shimura's...
Currently displaying 1 –
10 of
10