Decomposing Jacobians of curves with extra automorphisms
In this paper we generalize the deformation theory of representations of a profinite group developed by Schlessinger and Mazur to deformations of objects of the derived category of bounded complexes of pseudocompact modules for such a group. We show that such objects have versal deformations under certain natural conditions, and we find a sufficient condition for these versal deformations to be universal. Moreover, we consider applications to deforming Galois cohomology classes and the étale hypercohomology...
A Diophantine -tuple is a set of positive integers such that the product of any two of them is one less than a perfect square. In this paper we study some properties of elliptic curves of the form , where , is a Diophantine triple. In particular, we consider the elliptic curve defined by the equation where and , denotes the -th Fibonacci number. We prove that if the rank of is equal to one, or , then all integer points on are given by
Let be a one-variable function field over a field of constants of characteristic 0. Let be a holomorphy subring of , not equal to . We prove the following undecidability results for : if is recursive, then Hilbert’s Tenth Problem is undecidable in . In general, there exist such that there is no algorithm to tell whether a polynomial equation with coefficients in has solutions in .
We discuss the distribution of Mordell-Weil ranks of the family of elliptic curves y² = (x + αf²)(x + βbg²)(x + γh²) where f,g,h are coprime polynomials that parametrize the projective smooth conic a² + b² = c² and α,β,γ are elements from ℚ̅. In our previous papers we discussed certain special cases of this problem and in this article we complete the picture by proving the general results.